PPS When I showed Dylan a draft of this post, he immediately wondered whether it is possible to given an alternate proof using what we might call an "A-rectangle," that is, a rectangle where the ratio of long side to short side is sqrt(2). It has the property that when you bisect its long axis, you get two A-rectangles, at a 90 degree angle from your original. It turns out that A-series European paper (like A4 etc.) has this aspect ratio, so that
when you do side-by-side copying of two sheets, the double sheet has the same aspect ratio—a cool fact that I had not been aware of. (Numberphile video
here, more history
here; it turns out that the aspect ratio goes back to 1786 and specifics of the A-series go back to the early days of the metric system, with Lazare Carnot in 1798.)
He was absolutely right... starting with such a rectangle and subdividing continuously, the proof is immediate. But again, it does rely on a little bit of algebra. If we define an "A-rectangle" as one whose long side is equal to the diagonal of the square whose side is the short side, can you find a purely geometric proof that bisecting such a rectangle divides it into two A-rectangles? It is possible to give a short proof of that fact, and I'll let you have the fun of looking for it, if you want. But that's the thing about math... you work on a problem, come up with a solution you're happy with, and someone who is either smarter or has been exposed to different things (or both) comes up instantly with something simpler. But we get something out of having multiple approaches... in this case, some of the interesting side-notes on anthyphairesis and continued fractions.